

Dottorato di Ricerca in Informatica - Ciclo XXV Dipartimento di Informatica, Sistemistica e Comunicazione Facoltà di Scienze Matematiche, Fisiche e Naturali Università degli Studi di Milano - Bicocca

Algorithms for detecting variations from Next-Generation Sequencing Data

Presentazione Dottorato

30 Settembre 2010

Candidato: Stefano Beretta

Tutor: Prof.ssa Lucia Pomello

Stefano Beretta Algorithms for detecting variations from NGS data

∃ → < ∃</p>

Sequencing NGS Data Goals

Outline

State of the Art & Ongoing Works

3 Conclusions

Stefano Beretta Algorithms for detecting variations from NGS data

・ 同 ト ・ ヨ ト ・ ヨ

э

Sequencing NGS Data Goals

Motivations

- Revolution in genome sequencing and analysis: from traditional methods to NGS (Next-Generation Sequencing)¹
- Need to develop novel computational frameworks to analyze NGS data
- Goal: design algorithms to analyze NGS data for detecting sequence variations

¹Venter J.Craig, Nature (2010), *Multiple personal genomes await*

Sequencing NGS Data Goals

Genome Sequencing

Determination of the primary structure of a molecule ${\sf DNA/RNA} \rightarrow$ sequence of nucleotides

- Traditional Methods (Sanger, 1977)
- Next-Generation Sequencing Methods (2005)

MotivationsSequencingState of the Art & Ongoing Works
ConclusionsNGS Data
Goals

Sanger Vs. Next-Generation Sequencing

• Sanger (1977)

• NGS (2005)

 Motivations
 Sequencing

 State of the Art & Ongoing Works
 NGS Data

 Conclusions
 Goals

Sanger Vs. Next-Generation Sequencing

Sanger (1977)

- Long Reads (\sim 1000 bp)
- 2 Low Throughput $(\sim 10^6 \text{ bp/day})$
- 3 Low Coverage (\sim 1x)
- Expensive (10³ bp/\$)

NGS (2005)

- Short Reads (25-300 bp)
- I High Throughput $(\sim 10^9 \text{ bp/day})$
- High Coverage (>10x)
- Low Costs (> 10⁵ bp/\$)

くほし くほし くほし

 Motivations
 Sequencing

 State of the Art & Ongoing Works
 NGS Data

 Conclusions
 Goals

Sanger Vs. Next-Generation Sequencing

Sanger (1977)

- Long Reads (~1000 bp)
- 2 Low Throughput $(\sim 10^6 \text{ bp/day})$
- 3 Low Coverage (\sim 1x)
- Expensive (10³ bp/\$)

NGS (2005)

- Short Reads (25-300 bp)
- I High Throughput $(\sim 10^9 \text{ bp/day})$
- High Coverage (>10x)
- Low Costs (> 10⁵ bp/\$)

< ロ > < 同 > < 三 > <

Traditional Algorithms Models and Tools

Sequencing NGS Data Goals

NGS Data

э

Sequencing NGS Data Goals

Biological Problems

- Compare a known genome reference with an unknown genome (but sequenced by NGS)
- Infer transcripts data using short reads sampled by NGS

Detect Variations

Sequencing NGS Data Goals

Algorithmic Challenges

- More than 10^9 short sequences \Rightarrow Linear time algorithms
- Need for data compression / succint data structures
- New computational model and data structure for pattern matching (es. hashing, Burrows-Wheeler transf., suffix array)^{2 3 4}

 $^{^2}$ Langmead B, et al., Genome Biology (2009), Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

 $^{^{3}}$ Dalca V.A. and Brudno M., Briefings in Bioinformatics (2010), Genome variation discovery with high-throughput sequencing data

⁴Li H. and Homer N., Briefings in Bioinformatics (2010), A survey of sequence alignment algorithms for next-generation sequencing $\langle \Box \rangle \land \langle \Box \rangle \land \langle \Xi \rangle \land \langle \Xi \rangle$

Computational Problems dentification of Structural Variations Characterization of Alternative Splicing Events

Outline

3 Conclusions

Stefano Beretta Algorithms for detecting variations from NGS data

・ 同 ト ・ ヨ ト ・ ヨ

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Computational Problems

- Identification of differences (Structural Variations) between a known genome (*reference*) and an unknown genome sequenced by NGS (*donor*).
 - Biological Motivations:
 - SV are common in human individuals and are related to diversity and disease susceptibility $^{5\ 6}$
 - Detecting SV is crucial in medical and biological studies of several diseases

⁵Korbel, et al., Science (2007), Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome ⁶Tuzun, et al., Nature Genetics (2005), Fine-scale structural variation of the human genome < ≧ > < ≧ > < ≥ <

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Computational Problems

- Characterization of variations (i.e alternative splicing events) among different transcripts sequences (sequenced by NGS) of the same gene.
 - Biological Motivations:
 - Human genes undergo AS (alternative splicing)
 - AS is the key process in determining transcriptomes diversity

- - E - - E

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Identification of Structural Variations (SVs)

• Structural Variations (SVs)

- Insertions
- Deletions
- Inversions (>5 Kb)

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Identification of Structural Variations (SVs)

- $\bullet\,$ Structural variation discovery using maximum parsimony is NP-hard 7
- $\bullet\,$ Actual tools consider only one alignment (for each short read) and discard all the others $^8\,$
- Probabilistic frameworks have been designed for the identification of specific SVs

⁴ Hormozdiari F., Alkan C., Eichler E., Sahinalp C., Genome research (2009), *Combinatorial algorithms for structural variation detection in high-throughput sequenced genomes*

⁸Medvedev P., Stanciu M., Brudno M., Nature methods (2009) *Computational methods for discovering structural* variation with next-generation sequencing

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Identification of Structural Variations (SVs)

- Problem: predicting structural variations
 - **Input**: a set *S* of paired-ends (PEs) from a donor genome *D* and a reference genome *R*.
 - **Goal**: compute the set of structural variations that explains how *D* differs from *R*
- Previous approaches:
 - consider each SV separately
 - adopt probability based formulation
- Our Approach:
 - design a specific tool for PEs
 - develop an integrated approach for all SVs

4 3 6 4 3

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Identification of Structural Variations (SVs)

• Algorithmic Solution

- PEs are aligned to the reference genome *R* (> 1 locations and > 1 orientations) and clustered into
 - Concordant mapped $PEs \Rightarrow Donor = Reference$
 - $\bullet \ \ \mathsf{Discordant} \ \ \mathsf{mapped} \ \mathsf{PEs} \Rightarrow \mathsf{Structural} \ \mathsf{Variations}$
- Discordant PEs are analyzed to detect
 - Insertion / Deletion, Inversion, Other complex cases

Issues

- Large SVs are hard to detect
- Detecting combinations of different SVs

伺 ト イ ヨ ト イ ヨ ト

Computational Problems Identification of Structural Variations Characterization of Alternative Splicing Events

Characterization of Alternative Splicing Events

Alternative Splicing

(日) (同) (三) (三)

э

Characterization of Alternative Splicing Events

- No techniques based on short reads comparison
- No characterization of differences of transcripts
- Developed algorithms map the NGS data into the given reference genome to infer splice junctions⁹ ¹⁰

 $^{^9}$ Bryant, et. al., Bioinformatics (2010) Supersplatspliced RNA-seq alignment

Characterization of Alternative Splicing Events

- Problem: inference of alternative splicing (AS) events
 - Input: a set of short reads from transcripts of a gene
 - Goal: graph representation of AS events (genome scale)
- Previous approaches:
 - detect splice junctions
 - validate transcripts
- Our Approach:
 - detect differences (which are few) and discard similarities (too many)
 - no alignment to the reference genome

3 1 4 3

Motivations Computational Problems State of the Art & Ongoing Works Identification of Structural Variations Conclusions Characterization of Alternative Splicing Events

Characterization of Alternative Splicing Events

• Algorithmic Solution

- We index short reads with a hash table in order to:
 - assembly chains of short reads to compose Exons
 - identify junction points of Exons

Issues

- Not unique identification of splicing junction
- Some AS events are hard to characterize
- Needs for a topological sort of Exons

Outline

2 State of the Art & Ongoing Works

Stefano Beretta Algorithms for detecting variations from NGS data

Image: Image:

Conclusions

Stefano Beretta Algorithms for detecting variations from NGS data